МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

едеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ИАТЭ НИЯУ МИФИ)

ИНСТИТУТ ОБЩЕЙ ПРОФЕССИОНАЛЬНОЙ ПОДГОТОВКИ Кафедра Высшей математики

Одобрено на заседании Ученого совета ИАТЭ НИЯУ МИФИ Протокол от 24.04.2023 No 23.4

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дифференциальные и интегральные уравнения
для направления подготовки
12.03.01 Приборостроение
Образовательная программа:
Приборы и методы контроля качества и диагностики
Форма обучения: заочная

г. Обнинск 2023 г.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения ООП бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине:

Коды компетенций	Результаты освоения ООП	Перечень планируемых результатов обучения по
	Содержание	дисциплине**
	компетенций*	
ОПК-1	Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в инженерной деятельности, связанной с проектированием и конструированием, технологиями производства приборов и комплексов широкого назначения	Знать: основные методы дифференциального и интегрального исчисления функций одной переменной, основные понятия и методы дифференциального исчисления функций нескольких переменных, теорию числовых и функциональных рядов. Уметь:применять математические методы, модели и законы для решения практических задач. Владеть: математическим аппаратом и навыками использования современных подходов и методов математики к описанию, анализу, теоретическому и экспериментальному исследованию, моделированию природных явлений и процессов в объеме, необходимом для использования в обучении и
		профессиональной деятельности.

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина реализуется в рамках базовой части. Индекс дисциплины Б.02.01.04

Для освоения дисциплины необходимы компетенции, сформированные в рамках изучения следующих дисциплин: Математический анализ, Линейная алгебра, Обыкновенные дифференциальные уравнения, Теория функций комплексного переменного.

Дисциплина изучается на 2 -м курсе.

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 4 зачетных единиц (з.е.), 144 академических часа.

3.1. Объём дисциплины по видам учебных занятий (в часах)

	Форма обучения (вносятся данные по		
<u> </u>	реализуемы		
Вид работы	Очная	Заочная	
рид рассты	Семестр	Курс	
	№ 3	№2	
	Количество часов	в на вид работы:	
Контактная работа обучающихся			
с преподавателем			
Аудиторные занятия (всего)		19	
В том числе:			
лекции		6	
(лекции в интерактивной форме)			
практические занятия		13	
(практические занятия в			
интерактивной форме)			
лабораторные занятия			
Промежуточная аттестация			
В том числе:			
зачет			
экзамен		+	
Самостоятельная работа			
обучающихся			
Самостоятельная работа		105	
обучающихся (всего)		125	
В том числе:			
проработка учебного		2.1	
(теоретического) материала		31	
выполнение индивидуальных заданий			
(подготовка сообщений,		31	
презентаций)		-	
подготовка ко всем видам			
контрольных испытаний текущего		2.1	
контроля успеваемости (в течение		31	
семестра)			
подготовка ко всем видам			
контрольных испытаний		22	
промежуточной аттестации (по		32	
окончании семестра)			
Всего (часы):		144	
Всего (зачетные единицы):		4	

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

Для заочной формы обучения

	Для заочнои формы обучения					
№ п/п	Наименование раздела /темы дисциплины	1			ы в часа	X
,	The state of the s	Лек	Сем/Пр	Лаб	Внеау	СРО
1.	Раздел 1. Интегральные уравнения					
1.1.	Интегральные уравнения Фредгольма 2 рода	1	2			17
1.2.	Интегральные уравнения Вольтерра 2-го рода	1	2			18
1.3	Интегральные уравнения Фредгольма 1-го рода	1	2			18
1.4	Понятие о приближенных и численных методах решения интегральных уравнений	1	2			18
2.	Раздел 2. Вариационное исчисление					
2.1.	Необходимые условия достижения экстремума	1	2			18
2.2.	Достаточные условия достижения экстремума	1	2			18

2.3	Понятие о	0	1		18
	приближенных и				
	численных методах				
	решения задач				
	вариационного				
	исчисления уравнений				
	Всего	6	13		125

Прим.: Лек — лекции, Сем/Пр — семинары, практические занятия, Лаб — лабораторные занятия, СРО — самостоятельная работа обучающихся, Внеауд — внеаудиторная работа.

4.2. Содержание дисциплины, структурированное по разделам (темам)

Лекционный курс

,	Наименование	Содержание		
№	раздела /темы			
	дисциплины			
1.	Раздел 1. Интеграль	ные уравнения		
1.1.	Интегральные	Введение. Примеры задач, приводящих к		
	уравнения	интегральным уравнениям. Классификация		
	Фредгольма 2-го	линейных интегральных уравнений. Уравнения		
	рода	1-го и 2-го рода. Уравнения Фредгольма и		
		Вольтерра.		
		Уравнения Фредгольма 2-го рода.		
		Однородные уравнения Фредгольма 2-го рода.		
		Собственные функции и собственные значения		
		уравнений Фредгольма 2-го рода. Однородные и		
		неоднородные уравнения Фредгольма 2-го рода с		
		вырожденными ядрами. Сведение к задачам		
		линейной алгебры.		
		Уравнения с симметричными непрерывными		
		ядрами. Свойства вполне непрерывных		
		симметричных операторов. Свойства собственных		
		функций и собственных значений уравнений с		
		симметричным непрерывным ядром. Теорема		
		Гильберта-Шмидта.		
		Задача Штурма – Лиувилля. Сведение задачи		
		Штурма-Лиувилля к интегральному уравнению с		
		симметричным ядром. Свойства собственных		
		функций и собственных значений задачи Штурма –		
		Лиувилля. Теорема Стеклова.		
		Неоднородные уравнения Фредгольма 2-го рода.		
		Неоднородные уравнения Фредгольма 2-го рода с		

		вырожденными ядрами. Сведение к задачам
		линейной алгебры. Неоднородные уравнения с
		симметричными непрерывными ядрами.
		Резольвента, выражение через собственные
		функции. Уравнения с малыми А. Ряд Неймана.
		Повторные ядра. Союзные уравнения.
		Альтернативы Фредгольма. Резольвента уравнения
		Фредгольма 2-го рода.
		Обобщения: многомерный случай, полярные ядра,
		ядра, интегрируемые с квадратом. Уравнения типа
1.0	**	свертки, уравнения Абеля.
1.2.	Интегральные	Теорема о неподвижной точке сжимающего
	уравнения	оператора. Существование и единственность
	Вольтерра 2-го	решения уравнения Вольтерра. Ряд Неймана.
	рода	Повторные ядра. Резольвента уравнения
		Вольтерра. Уравнения Вольтерра типа свертки.
		Операционный метод решения уравнений
		Вольтерра.
1.3	Интегральные	Корректность задач (по Адамару). Уравнение
1.5	уравнения	Фредгольма 1 рода как пример некорректной
	Фредгольма 1-го	задачи. Понятие псевдорешения. Алгоритм
	рода	регуляризации А. Н. Тихонова.
1.4	Понятие о	Приближенные методы решения интегральных
	приближенных и	уравнений: метод замены ядра вырожденным,
	численных методах	метод Ритца.
	решения	Численные методы решения интегральных
	интегральных	уравнений. Сеточные методы решения.
	уравнений	
2.	Раздел 2. Вариацион	
2.1.	Необходимые	Введение. Примеры прикладных задач
	условия	вариационного исчисления: задача о
	достижения	брахистохроне, задача о минимальной поверхности.
	экстремума	Основные понятия вариационного исчисления.
		Функциональные пространства. Функционал,
		экстремум функционала, экстремаль. Вариация
		аргумента. Линейные функционалы, первая
		вариация функционала. Необходимое условие
		достижения экстремума. Основная лемма
		вариационного исчисления.
		Вариационные задачи с фиксированными
		границами. Простейшая вариационная задача с

		фиксированными границами. Уравнение Эйлера.
		Функционалы с высшими производными,
		зависящие от многих неизвестных.
		Вариационные задачи с подвижными
		границами. Задачи с подвижными границами.
		Условие трансверсальности.
		Вариационные задачи с ограничениями. Задачи
		с голономными связями. Задачи с неголономными
		связями. Изопериметрические задачи.
2.2.	Достаточные	Достаточные условия экстремума. Сильный и
	условия	слабый экстремумы. Вторая вариация
	достижения	функционала. Достаточное условие достижения
	экстремума	экстремума. Дотаточные условия слабого
		экстремума. Вторая вариация функционала с
		фиксированными границами. Достаточные условия
		знакоопределенности квадратичного функционала.
		Условие Лежандра. Поле экстремалей.
		Сопряженные точки. Условие Вейерштрасса.
2.3	Понятие о	Приближенные методы решения задач
	приближенных и	вариационного исчисления. Метод Ритца.
	численных методах	Численные методы решения задач вариационного
	решения задач	исчисления. Сеточные методы решения.
	вариационного	
	исчисления	
	уравнений	

Практические/семинарские занятия

	Наименование	Содержание
№	раздела /темы	
	дисциплины	
1.	Раздел 1. Интегралы	ные уравнения
1.1.	Интегральные	Однородные уравнения Фредгольма 2-го рода с
	уравнения	вырожденными ядрами.
	Фредгольма 2-го	Решение однородных уравнений Фредгольма 2-го
	рода	рода с симметричным ядром свдением к задаче
		Штурма – Лиувилля
		Неоднородные уравнения Фредгольма 2-го рода с
		вырожденным ядром
		Резольвента уравнения Фредгольма 2-го рода с
		симметричным ядром.
		Построение резольвенты уравнения Фредгольма
		2-го рода через повторные ядра.

1.2.	Интегральные уравнения Вольтерра 2-го рода	Уравнения Вольтерра. Решение методом дифференцирования. Уравнения Вольтерра. Решение методом построения резольвенты. Уравнения Вольтерра. Решение методом последовательных приближений.
2.	Раздел 2. Вариацион	ное исчисление
2.1.	Необходимые условия достижения экстремума	Построение экстремалей в задачах с фиксированной границей. Построение экстремалей в задачах с подвижными границами. Построение экстремалей в задачах на условный экстремум.
2.2.	Достаточные условия достижения экстремума	Определение достижения слабого экстремума.

Лабораторные занятия Не предусмотрены

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Основная литература.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

6.1. Паспорт фонда оценочных средств по дисциплине

№ п/п	Контролируемые разделы (темы)	Код контролируемой компетенции (или её части) / и ее	Наименование оценочного
	дисциплины	формулировка	средства
	(результаты по		
	разделам)		
1.	Интегральные	Способен применять естественнонаучные	Контрольная
	уравнения	и общеинженерные знания, методы	работа 1
		математического анализа и	•
		моделирования в инженерной	
		деятельности, связанной с	
		проектированием и конструированием,	
		технологиями производства приборов и	
		комплексов широкого назначения	
		(ОПК-1)	

2.	Вариационное	Способен осуществлять поиск,	Контрольная
	исчисление	критический анализ и синтез	работа 2
		информации, применять системный	1
		подход для решения поставленных задач	
		(УК-1), Способен определять круг задач в	
		рамках поставленной цели и выбирать	
		оптимальные способы их решения,	
		исходя из действующих правовых норм,	
		имеющихся ресурсов и ограничений	
		(УК-2)	
	Экзамен	Способен применять естественнонаучные	Экзаменационн
		и общеинженерные знания, методы	ый билет
		математического анализа и	
		моделирования в инженерной	
		деятельности, связанной с	
		проектированием и конструированием,	
		технологиями производства приборов и	
		комплексов широкого назначения	
		(ОПК-1)	
	Всего: контрольная	1, 2, экзамен.	

6.2. Типовые контрольные задания или иные материалы

6.2.1. Экзамен или зачет

- а) типовые вопросы (задания):
- 1. Классификация интегральных уравнений. Особенности постановки задач для уравнений Фредгольма и Вольтерра.
- 2. Евклидовы, нормированные, метрические пространства. Нормы C, C_n, L_2 . Скалярное произведение в нормированном пространстве L_2 .
- 3. Ограниченные, непрерывные операторы в нормированных пространствах.
- 4. Норма линейного оператора. Свойство нормы оператора.
- 5. Вполне непрерывные операторы в евклидовом пространствах.
- 6. Существование собственных значений и векторов вполне непрерывного симметричного оператора.
- 7. Свойства собственных значений и собственных функций вполне непрерывного симметричного оператора.
- 8. Однородные уравнения Фредгольма второго рода. Собственные значения и собственные векторы оператора Фредгольма.
- 9. Свойства оператора Фредгольма. Теорема Арцела (б/д).
- 10. Существование и свойства собственных значений и собственных функций уравнений Фредгольма 2-го рода с симметричными непрерывными ядрами.
- 11. Теорема Гильберта-Шмидта.
- 12. Повторные ядра. Разложения повторных ядер по собственным функциям.
- 13. Сведение задачи Штурма-Лиувилля к интегральному уравнению.
- 14. Свойства собственных значений и собственных функций задачи Штурма-Лиувилля.
- 15. Теорема Стеклова.

- 16. Неоднородные уравнения Фредгольма второго рода с симметричным непрерывным ядром.
- 17. Неоднородные уравнения Фредгольма второго рода с малым А. Ряд Неймана.
- 18. Союзное уравнение. Свойства союзных уравнений.
- 19. Теоремы Фредгольма.
- 20. Резольвента уравнения Фредгольма 2-го рода с симметричным непрерывным ядром. Выражение резольвенты через собственные функции.
- 21. Резольвента уравнения Фредгольма 2-го рода с малым λ.Выражение резольвенты через повторные ядра.
- 22. Однородные уравнения Фредгольма 2-го рода с вырожденными ядрами.
- 23. Неоднородные уравнения Фредгольма 2-го рода с вырожденными ядрами.
- 24. Уравнения Фредгольма 2-го рода типа свертки.
- 25. Уравнения Вольтерра второго рода. Существование и единственность решения.
- 26. Теорема о неподвижной точке сжимающего оператора.
- 27. Резольвента уравнения Вольтерра.
- 28. Уравнения Вольтерра типа свертки. Операционный метод решения.
- 29. Интегральные уравнения Фредгольма первого рода. Основные свойства.
- 30. Некорректно поставленные задачи. Псевдорешение.
- 31. Алгоритм А. Н. Тихонова решения некорректных задач.
- 32. Прямой численный метод решения уравнения Фредгольма и Вольтерра.
- 33. Метод решения уравнений Фредгольма заменой ядра вырожденным ядром.
- 34. Задачи вариационного исчисления. Функционалы, экстремум функционала.
- 35. Функциональные пространства C_0 , C_1 , C_n . Сильный и слабый экстремум.
- 36. Вариация функционала. Необходимое условие достижения экстремума.
- 37. Основная лемма вариационного исчисления.
- 38. Вариационная задача с неподвижными границами. Уравнение Эйлера.
- 39. Основные случаи интегрируемости уравнения Эйлера.
- 40. Вариационные задачи с неподвижными границами и высшими производными.
- 41. Вариационные задачи с неподвижными границами с несколькими неизвестными.
- 42. Задачи с подвижными границами. Условие трансверсальности.
- 43. Задачи на условный экстремум с голономными связями.
- 44. Изопериметрические задачи на условный экстремум.
- 45. Достаточные условия экстремума. Слабый и сильный экстремумы.
- 46. Вторая вариация функционала.
- 47. Исследование знакоопределенности квадратичного функционала.
- 48. Достаточные условия слабого экстремума. Условие Лежандра.
- 49. Достаточные условия сильного экстремума. Поле экстремалей. Условие Вейерштрасса.
- 50. Прямой численный метод решения вариационной задачи с фиксированными границами.
- 51. Методы Ритца решения вариационных задач с фиксированными границами.

- б) критерии оценивания компетенций (результатов): Отлично/хорошо/удовлетворительно/неудовлетворительно
- в) описание шкалы оценивания:

Допуск к экзамену по дисциплине осуществляется при количестве набранных в течение семестра баллов равно и/или более 35 и всех выполненных заданиях. За семестр студент может набрать от 35 до 60 баллов.

Оценка	Критерии оценки		
Отлично	Студент должен:		
36-40	- продемонстрировать глубокое и прочное усвоение знаний		
	программного материала;		
	- исчерпывающе, последовательно, грамотно и логически стройно		
	изложить теоретический материал;		
	- правильно формулировать определения;		
	- продемонстрировать умения самостоятельной работы с		
	литературой;		
	- уметь сделать выводы по излагаемому материалу.		
Хорошо	Студент должен:		
30-35	- продемонстрировать достаточно полное знание программного		
	материала;		
	- продемонстрировать знание основных теоретических понятий;		
	достаточно последовательно, грамотно и логически стройно		
	излагать материал;		
	- продемонстрировать умение ориентироваться в литературе;		
	- уметь сделать достаточно обоснованные выводы по излагаемому		
	материалу.		
Удовлетворительно	Студент должен:		
25-29	- продемонстрировать общее знание изучаемого материала;		
	- показать общее владение понятийным аппаратом дисциплины;		
	- уметь строить ответ в соответствии со структурой излагаемого		
	вопроса;		
	- знать основную рекомендуемую программой учебную		
	литературу.		
Неудовлетворительно	Студент демонстрирует:		
24 и меньше	- незнание значительной части программного материала;		
	- не владение понятийным аппаратом дисциплины;		
	- существенные ошибки при изложении учебного материала;		
	- неумение строить ответ в соответствии со структурой		
	излагаемого вопроса;		
	- неумение делать выводы по излагаемому материалу.		

6.2.2. Наименование оценочного средства

Контрольная работа №1

а) типовые задания (вопросы) - образец:

Вариант 1

1. Решить неоднородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_{-2}^{2} (xt + x^{3}t^{3})y(t)dt + x^{2}$$

2. Решить однородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_{-\pi}^{\pi} \sin(x+t)y(t)dt$$

3. Решить уравнение Фредгольма с симметричным ядром. (9 баллов)

$$y(x) = 2 \int_{0}^{\pi/2} K(x,t)y(t)dt + \cos 3x$$

$$\sin x \cos x \qquad x \quad t0 \le \le$$

$$K(x,t) = \sin x \cos x \quad t \quad x \quad \le \le \pi/2$$

4. Построить резольвенту для неоднородного уравнения Фредгольма второго рода и записать решение этого уравнения через резольвенту.

Ядро
$$\sin(x-0.5t)$$
 $0 \le x \le 4\pi$; $0 \le t \le 4\pi$; (5 баллов)

- б) критерии оценивания компетенций (результатов):
- 1. Задача оценивается полным баллом при получении правильного ответа при правильном ходе решения;
- 2. Задача оценивается 0,5-0,75 от полного балла при правильном ходе решения и непринципиальных ошибках арифметического характера, повлекшими за собой неверный ответ;
- 3. Задача оценивается в 1-2 балла при правильном ходе решения, не доведенном до получения ответа;
- 4. Задача оценивается в 0 баллов при неверном ходе решения не зависимо от наличия и правильности ответа.
- в) описание шкалы оценивания:

Контрольная $N \ge 1$ содержит 4 задачи по интегральным уравнениям Фредгольма 2-го рода. 1, 2, и 4-я задачи оцениваются по 7 баллов; 3 -я задача — 9 баллов.

6.2.3. Наименование оценочного средства

Контрольная работа №2

а) типовые задания (вопросы) - образец:

Вариант 1

1.(6 баллов) Решить уравнение Вольтерра, сведя его к дифференциальному уравнению

$$y(x) = 5 + \int_{0}^{x} \frac{2t+1}{2x+1} y(t) dt.$$

2.(6 баллов) Найти резольвенту для уравнения Вольтерра и записать решение неоднородного уравнения Вольтера второго рода через резольвенту . Ядро уравнения Вольтерра

$$K(x,t) = e^{x^2 - t^2}$$
.

3.(6 баллов) Найти экстремаль функционала

$$v[y] = \int_0^1 e^{-4x} (y'^2 + 2yy' - 7y^2 + ye^{5x}) dx, y(0) = 0, y(1) = 1.$$

4.(6 баллов) Найти экстремали функционала

$$v[y,z] = \int_0^1 (y'^2 + z'^2 + 2y^2 + 8byz + 8z^2) dx.$$

5. (6 баллов) Найти экстремали функционала

$$v[y] = \int_0^1 (4y^2 + 5y'^2 + y''^2 + yx) dx.$$

- 1. Задача оценивается полным баллом при получении правильного ответа при правильном ходе решения;
- 2. Задача оценивается 0,5-0,75 от полного балла при правильном ходе решения и непринципиальных ошибках арифметического характера, повлекшими за собой неверный ответ;
- 3. Задача оценивается в 1-2 балла при правильном ходе решения, не доведенном до получения ответа;
- 4. Задача оценивается в 0 баллов при неверном ходе решения не зависимо от наличия и правильности ответа.
- в) описание шкалы оценивания:

Контрольная №2 содержит 2 задачи по интегральным уравнениям Вольтерра 2-го рода и 3 задачи по вариационному исчислению. Все задачи оцениваются по 6 баллов.

6.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Рейтинговая оценка знаний является интегральным показателем качества теоретических и практических знаний и навыков студентов по дисциплине и складывается из оценок, полученных в ходе текущего контроля и промежуточной аттестации.

Текущий контроль в семестре проводится с целью обеспечения своевременной обратной связи, для коррекции обучения, активизации самостоятельной работы студентов.

Промежуточная аттестация предназначена для объективного подтверждения и оценивания достигнутых результатов обучения после завершения изучения дисциплины.

Текущий контроль осуществляется два раза в семестр: контрольная точка № 1 (КТ № 1) и контрольная точка № 2 (КТ № 2).

Результаты текущего контроля и промежуточной аттестации подводятся по шкале балльно-рейтинговой системы.

Вид контроля	Этап рейтинговой системы Оценочное средство	Балл	
		Минимум	Максимум
Текущий	Контрольная точка № 1	18	30
	Контрольная работа №1	18	30
	Контрольная точка № 2	18	30
	Контрольная работа №2	18	30
Промежуточный	Экзамен	24	40
Вопрос		5	10
Задача		5	10
Задача		7	10
	Задача	7	10
ИТОГО по дисциплине		60	100

Определение бонусов и штрафов

Бонусы: поощрительные баллы студент получает к своему рейтингу в конце семестра за активную и регулярную работу на занятиях. Согласно Положению о баллно-рейтинговой системе оценке знаний ИАТЭ НИЯУ МИФИ бонус (премиальные баллы) не может превышать **5 баллов**. Выставляется по решению преподавателя, проводящиго практические (семинарские) занятия. Дополнительные (бонусные) баллы могут быть выставлены студенту за участие в конференциях, научных семинарах, подготовке докладов и т.п., предполагающих глубокое знание разделов дисциплины «Интегральные уравнения».

Штрафы: за несвоевременную сдачу всех видов текущего контроля максимально оценка может быть снижена до 5 баллов.

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) основная учебная литература:

1. Демидович, Б.П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения [Электронный ресурс]: учебное пособие / Б.П. Демидович, И.А. Марон, Э.З. Шувалова. — Электрон. дан. — СПб.: Лань, 2010. — 400 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=537

2.

б) дополнительная учебная литература:

- **1.** Васильева А. Б. Интегральные уравнения : учебник / А. Б. Васильева, Н. А. Тихонов. 3-е изд., стер. СПб. : Лань, 2009. 160 с. : ил. (10 экз.)
- 2. Васильева А.Б. Интегральные уравнения : Учеб. для вузов / А.Б. Васильева, Н.А. Тихонов; Ред. А.Н. Тихонов, Ред. В.А. Ильин, Ред. А.Г. Свешников. 2-е изд.
- М.: Физматлит, 2004. 160 с. (Курс высшей математики и математической физики; Вып. 7) (80 экз.)

- 3. В. Краснов М.Л. Интегральные уравнения : Задачи и примеры с подробными решениями: Учеб. пособие для вузов / М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. 3-е изд., испр. М. : УРСС, 2003. 192 с. (Вся высшая математика) (48 экз.)
- 4.В. М. Вержбицкий. Численные методы (математический анализ и обыкновенные дифференциальные уравнения): Учебн. Пособие для вузов.-М.: Высш. Школа., 2001.-382 с.: с илл.
 - 5.Б. А. Зон. Лекции по интегральным уравнениям. М.- Высшая школа. 2004.
- 6. Цлаф Л.Я. Вариационное исчисление и интегральные уравнения. –СПб.: изд. "Лань", 2005.-192 с.
- 7.А. Б. Васильева, Г. Н. Медведев, Н. А. Тихонов, Т. А. Урзгильдина. Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах: –М.:ФИЗМАТЛИТ, 2003.- 432 с.
- 8. Перечень ресурсов* информационно-телекоммуникационной сети «Интернет» (далее сеть «Интернет»), необходимых для освоения дисциплины

http://ibooks.ru/

http://e.lanbook.com/

http://www.biblio-online.ru/

http://kuperbook.biblioclub.ru

http://www.studentlibrary.ru

http://library.mephi.ru

9. Методические указания для обучающихся по освоению дисциплины Лекшии.

При изучении дисциплины необходимо конспектировать лекции, кратко записывая основные определения, формулировки теорем и основные пункты их доказательств. Для понимания материала лекций и его качественного усвоения рекомендуется за день до следующей лекции прочитать и повторить материал по конспекту. В случае возникших вопросов изучить теоретический материал по учебнику либо получить консультацию у преподавателя. Желательно дополнительно прочитывать материал по рекомендованным учебникам. Особое внимание обратить в первом семестре на тему «Пределы» (в силу непривычности терминов, обозначений и сложности), а во втором -- на тему «Интегралы» (как одну из самых нужных в других предметах естественно-научного цикла).

Практические занятия.

При подготовке к практическим занятиям надо прочитать теоретический материал по теме и просмотреть материалы предыдущего семинара и только потом приступать к выполнению домашнего задания. На практических занятиях активно участвовать в работе группы, в случае невыполнения отдельных заданий задавать вопросы преподавателю.

Контрольная работа, коллоквиум.

При подготовке к контрольной, коллоквиуму необходимо повторить теоретический

материал по лекциям и учебникам, просмотреть типичные задачи по теме, которые решались на занятиях и в домашних заданиях, решить несколько задач по теме контрольной работы.

Экзамен.

При подготовке к экзамену необходимо изучить теоретический материал, который выносится на экзамен, по конспекту лекций. Для лучшего понимания или в случае возникновения вопросов обратиться к рекомендуемым учебникам или Интернет-ресурсам. На консультациях активно выяснять возникшие вопросы. Экзамен является итоговой аттестацией по предмету за семестр, поэтому он требует систематизации всего лекционного и практического материала. Для успешной сдачи экзамена требуется систематическая работа в семестре, активная самостоятельная работа с учебниками или Интернет-ресурсами.

Основное методическое указание по всем предметам и на все времена: Учиться, учиться и еще раз учиться (как завещал великий В. И. Ленин).

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Использование <u>лицензионных</u> прикладных программных пакетов Maple, Mathematica, MatLab, MathCad.

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория, оснащенная проектором, компьютерные классы с рабочими местами, оснащенными <u>лицензионными</u> пакетами Maple, Mathematica, MatLab, MathCad.

12. Иные сведения и (или) материалы

12.1. Перечень образовательных технологий, используемых при осуществлении образовательного процесса по дисциплине

Применяемые на лекционных занятиях

- Технология концентрированного обучения (лекция-беседа, привлечение внимания студентов к наиболее важным вопросам темы, содержание и темп изложения учебного материала определяется с учетом особенностей студентов)
- Технология активного обучения (визуальная лекция с разбором конкретных ситуаций)

Применяемые на практических занятиях

- Технология активного обучения (визуальный семинар с разбором конкретных задач).
- Технология интерактивного обучения (мозговой штурм: группа получает задание, далее предполагается высказывать как можно большее количество вариантов решения, затем из общего числа высказанных идей отбираются наиболее удачные, которые могут быть использованы на практике).

12.2. Формы организации самостоятельной работы обучающихся (темы, выносимые для самостоятельного изучения; вопросы для самоконтроля; типовые задания для самопроверки

Темы, выносимые для самостоятельного изучения.

- 1. Уравнения Вольтерра типа свертки. Операционный метод решений уравнений Вольтерра типа свертки.
- 2. Вариационные задачи с многими пространственными переменными.
- 3. Достаточные условия слабого экстремума в задачах с фиксированными границами.

Вопросы для самоконтроля.

Тема 1.

Уравнения Вольтерра 2-го рода.

Свертка функций и её свойства.

Преобразование Лапласа и его свойства.

Таблица преобразований Лапласа.

Преобразование Лапласа свертки функций.

Операторный метод решения уравнений Вольтерра типа свертки.

Обратное преобразование Лапласа.

Формула Меллина.

Тема 2.

Первая вариация функционала.

Необходимое условие достижения экстремума.

Функционалы, зависящие от функций нескольких независимых переменных.

Многомерная задача с фиксированными границами.

Уравнение Эйлера – Пуассона.

Тема 3.

Сильный и слабый экстремумы.

Вторая вариация функционала.

Преобразование второй вариации.

Квадратичный функционал.

Условие Лежандра.

Сопряженные точки.

Условие Якоби.

Типовые задания для самопроверки.

Тема 1. Задачи 116-129 [2]

Тема 2. Задачи 110-114 [3].

Тема 3. Задачи 154-159 [3].

12.3. Краткий терминологический словарь

Математика

Уравнение

Интеграл

Производная

Интегральное уравнение

Линейное интегральное уравнение

Интегральное уравнение Фредгольма 1 рода

Интегральное уравнение Фредгольма 2 рода

Интегральное уравнение Вольтерра 1 рода

Интегральное уравнение Вольтерра 2 рода

Однородные интегральные уравнения Фредгольма 2-го рода

Вполне непрерывные симметричные операторы

Собственные функции и собственные значения

Симметричные ядра

Уравнения с симметричными ядрами

Теорема Гильберта-Шмидта

Неоднородные уравнения Фредгольма 2-го рода

Союзные уравнения

Теоремы Фредгольма

Резольвента

Повторные ядра

Ряд Неймана

Вырожденные ядра

Уравнения с вырожденными ядрами

Уравнения Вольтерра

Теорема существования и единственности

Резольвента

Повторные ядра

Уравнения Фредгольма 1 рода

Корректность задачи по Адамару

Некорректные задачи

Алгоритмы решения некорректных задач

Функционал

Экстремум функционала

Первая вариация функционала

Необходимое условие экстремума

Вариационные задачи с фиксированными границами Уравнение Эйлера Сильный и слабый экстремумы Достаточные условия слабого экстремума

Программа составлена в соответствии с о образования НИЯУ МИФИ по н Приборостроение.	образовательным стандартом высшего аправлению подготовки 12.03.01			
Программу составил:				
Л.А.Королева, доцент	кафедры ВМ, к.ф.м.н.			
Рецензент:				
Н.Э. Клиншпонт, доц	ент кафедры ВМ, к.ф м.н., доцент			
Программа рассмотрена на заседании отделения ЯФиТ				
(протокол № <u>1</u> от « <u>31</u> » <u>августа</u> 2020 г.)				
	Начальник отделения			
	Ядерной физики и технологий			
	Д.С. Самохин			
	« <u>31</u> » <u>августа</u> 2020 г.			